

Christopher Hoult

Who is this guy?

DATASIFT

DD BERKSHIRE

Simple Machine Learning

Previously...

How Insular is PHP?

 Analysis of first time PHP speakers Used Joind.in events as a proxy

Simple Machine Learning

• Blog post by Larry Garfield (2015-08-24) http://www.garfieldtech.com/blog/php-conference-data

Determined 50.6% first-time speakers

Joind.im

 https://joind.in Open source event site 1084 events with 13871 talks 409 events tagged; 675 untagged Not all events are about PHP!

Simple Machine Learning

Correct as of 2016-02-13

11 hours' work (1 per min) Typos; inconsistency What about future events? Not fun or cool!

Mechanical Turk

Scalable Typos; inconsistency Automatable • Expensive Kinda fun and cool

Machine Learning

Fast Consistent Automated Fun and cool!

Pattern Recognition

- Correlation == Causation (ish) Stereotypes
- Baader-Meinhoff

Simple Machine Learning

Brains are pattern recognition machines

Teaching

 Structured intro to ideas Teaching adds authority Therefore accuracy Chances to fail; be corrected

hand

https://flic.kr/p/AAUaZP

Unsupervised Learning

 No extra information provided Clustering of similar items Helps uncover hidden structure word2vec is a good example

Supervised Learning

 Existing documents are labelled Model build from knowns New documents labelled accordingly

Simple Machine Learning

The existing labels are the supervision

Regression

 Estimate the relationship between values Essentially line of best fit Used for continuous values • eg. predict a value x given n other variables

Classification

Associate labels with documents Just like in biology or libraries Requires known labels

 Supervised classification using Joind.in tags using interactive tagging

Simple Machine Learning

Multivariate Naive Bayesian Classification Bernoulli Multivariate NB Classification

• Training Feature Extraction Model building Prediction Feature Extraction Model application

https://flic.kr/p/9pbzs7

The state of

and the second sec

Feature Extraction

 Machines can read Machines cannot comprehend Objectivity vs subjectivity Machines understand numbers So convert items to numbers!

Feature Extraction

- Numerous approaches:
 - Term frequency
 - tf*idf
 - N-gram presence
 - Can be constructed
 - Anything that creates a number
- ML is about identifying correlation

Feature Vectors

 Each feature is a dimension Matrix manipulation Also cool: cosine similarity Modelled in n-dimension space Requires positive values (eg. tf*idf) Dot product over magnitude

Joind.in ExampleEvent: PHP UK Conference 2016Talk: Simple Machine Learning

Description: Want to separate the signal from the noise, but have too much input to deal with? Fed up with reading everything yourself? Mechanical Turk got you down? Then perhaps you need to apply some machine learning! In this talk, Christopher will cover some basic approaches to machine-learned classification as well as demonstrate a real-life application of it in PHP.

Simple Machine Learning

Feature*	Value
event.title.php	1
event.title.uk	1
event.title.conference	1
talk.title.simple	1
talk.title.machine	1
talk.title.learning	1
description.word.separate	1
description.word.signal	1
description.word.noise	1
description.word.input	1
description.word.deal	1
description.word.fed	1
description.word.read	1
description.word.everything	1
description.word.mechanical	1
description.word.turk	1
description.word.perhaps	1
description.word.apply	2
description.word.machine	2
description.word.learn	2
description.word.talk	1
description.word.christopher	1
description.word.cover	
description.word.basic	
description.word.approacn	
description.word.classify	
description.word.demonstrate	
description.word.real	
description.word.life	
aescription.word.pnp	

* Stop words removed and partially stemmed

Supervised Learning

Start with a Training Set Already tagged/classified Considered representative of tag occurrence Extract features Correlate with tags

Many methods Assume TS is a representative sample

Number of items with feature and tag Number of items with feature

Simple Machine Learning

Probability that a tag predicts a feature

Also written as:

Number of items with feature and tag Number of items with feature

Simple Machine Learning

P(Feature | Tag)

public function generateModel()

\$this->model->reset(); \$cnt = 0;

foreach (\$this->tagFeatureList as \$label => \$labelFeatures) {

\$model = array_fill_keys(array_keys(\$this->featureList), 0); \$model = array merge(\$model, \$labelFeatures); foreach (\$this->featureList as \$feature => \$count) {

model[\$feature] = (\$model[\$feature] + 1) / (\$count + 1);

\$this->model->setDocCount(\$this->docCount);

Simple Machine Learning

```
$this->model->setLabelModel($label, $this->tagCounts[$label], $model);
```


public function generateModel()

\$this->model->reset(); scnt = 0;foreach (\$this->tagFeatureList as \$label => \$labelFeatures) { \$model = array_fill_keys(array_keys(\$this->featureList), 0); \$model = array merge(\$model, \$labelFeatures); foreach (\$this->featureList as \$feature >> \$count) { \$model[\$feature] = (\$model[\$feature] + 1) / (\$count + 1); \$this->model->setLabelModel(\$label, \$this->tagCounts[\$label], \$model);

\$this->model->setDocCount(\$this->docCount);

A list of all features encountered and their occurrence count

Simple Machine Learning

public function generateModel()

```
$this->model->reset();
\$cnt = 0;
```

```
foreach ($this->tagFeatureList as $label => $labelFeatures) {
    $model = array_fill_keys(array_keys($this->featureList), 0);
    $model = array merge($model, $labelFeatures);
    foreach ($this->featureList as $feature => $count) {
        model[\$feature] = (\$model[\$feature] + 1) / (\$count + 1);
    $this->model->setLabelModel($label, $this->tagCounts[$label], $model);
```

\$this->model->setDocCount(\$this->docCount);

Laplace Smoothing reduces zeros in our model

Simple Machine Learning

public function generateModel()

```
$this->model->reset();
\$cnt = 0;
```

foreach (\$this->tagFeatureList as \$label => \$labelFeatures) {

\$model = array_fill_keys(array_keys(\$this->featureList), 0); \$model = array merge(\$model, \$labelFeatures); foreach (\$this->featureList as \$feature => \$count) {

\$this->model->setDocCount(\$this->docCount;)

Cheating (ssh!)

Simple Machine Learning

```
model[\$feature] = (\$model[\$feature] + 1) / (\$count + 1);
$this->model->setLabelModel($label, $this->tagCounts[$label], $model);
```


Bayes' Theorem

Simple Machine Learning

P(T | F) = P(T)P(F | T)P(F)

https://upload.wikimedia.org/wikipedia/commons/7/77/Sneeze.JPG

Multivariate Bayes'

$P(T|F_1,F_2,F_3) = P(T)P(F_1|T)(F_2|T)(F_3|T)$ $P(F_{1}, F_{2}, F_{3})$

(See http://choult.com/blog/bayes-theorem-machine-learning)

Multivariate Bayes'

$P(T | F_1, F_2, F_3) = P(T)P(F_1 | T)(F_2 | T)(F_3 | T)$

Also known as our prior We'll assume this to be # docs tagged / # docs

Multivariate Bayes'

$P(T|F_1,F_2,F_3) = P(T)P(F_1|T)(F_2|T)(F_3|T)$

We can use this number as a lever for our model

private function predictLabel(\$label, array \$features)

foreach (array keys(\$features) as \$feature) { if (\$this->model->labelModelsFeature(\$label, \$feature)) { \$score *= \$probability;

return \$score;

Simple Machine Learning

```
$score = $this->model->getLabelCount($label) / $this->model->getDocCount();
        $probability = $this->model->getLabelFeatureModel($label, $feature);
```


private function predictLabel(\$label, array \$features)

foreach (array keys(\$features) as \$feature) { if (\$this->model->labelModelsFeature(\$label, \$feature)) { \$score *= \$probability;

return \$score;

Our prior

Simple Machine Learning

```
$score = $this->model->getLabelCount($label) / $this->model->getDocCount();
        $probability = $this->model->getLabelFeatureModel($label, $feature);
```


Is this feature in our model? If not, skip it

Simple Machine Learning

\Choult\Enamel\Classifier\MultiVariateNaiveBayes.php

\$score = \$this->model->getLabelCount(\$label) / \$this->model->getDocCount(); \$probability = \$this->model->getLabelFeatureModel(\$label, \$feature);

private function predictLabel(\$label, array \$features)

P(Tag | Feature)

Simple Machine Learning

```
$score = $this->model->getLabelCount($label) / $this->model->getDocCount();
        $probability = $this->model->getLabelFeatureModel($label, $feature);
```


private function predictLabel(\$label, array \$features)

```
$score = log($this->model->getLabelCount($label) / $this->model->getDocCount());
foreach (array keys($features) as $feature) {
    if ($this->model->labelModelsFeature($label, $feature)) {
        $probability = $this->model->getLabelFeatureModel($label, $feature);
        $score += log($probability);
return $score;
```

Multiplication makes small numbers smaller - so use logs

Simple Machine Learning

https://flic.kr/p/8UhM1c

https://flic.kr/p/88bgji

Lessons Learned

 Bayes' Theorem is annoying Joind.in tags: Heavily PHP-biased • Noisy! NB takes a lot of memory

• 350 tags * 13200 features * 76 bytes == lots!

Next Steps

 Improve on feature selection Build model into Joind.in Improve performance! Investigate matrix extensions Caching etc.

Simple Machine Learning

Implement more classifiers and weighting

The Code

• Enamel https://github.com/choult/enamel Work in progress! Joind.in Audit https://github.com/choult/joindinaudit Thanks to Larry Garfield

J @choult **An christopherhoult** @ chris@choult.com Feedback please! https://joind.in/talk/b993b

This presentation was typeset in HandTIMES and Open Sans, using Adobe InDesign CS6 (because I'm a lunatic)

